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Abstract. A new class of piecewise linear methods for the numerical solution of

the one-dimensional Euler equations of gas dynamics is presented. These methods are

uniformly second-order accurate, and can be considered as extensions of Godunov's

scheme. With ar_ appropriate definition of monotonicity preservation for the case of

linear convection, it can be shown that they preserve monotonicity. Similar to Van

Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by

an upwind step. For the reconstruction step, a monotonicity constraint that preserves

uniform second-order accuracy is introduced. Computational efficiency is enhanced by

devising a criterion that detects the 'smooth' part of the data where the constraint is

redundant. The concept and coding of the constraint are simplified by the use of the

median function. A slope-steepening technique, which has no effect at smooth regions

and can resolve a contact discontinuity in four cells, is described. As for the upwind

step, existing and new methods are applied in a manner slightly different from those

in the literature. These methods axe derived by approximating the Euler equations via

linearization and diagonalization. At a 'smooth' interface, Haxten, Lax, and Van Leer's

one-intermediate-state model is employed. A modification for this model that can

resolve contact discontinuities is presented. Near a discontinuity, either this modified

model or a more accurate one, namely, Roe's flux-difference splitting, is used. The

current presentation of Roe's method, via the conceptually simple flux-vector splitting,

not only establishes a connection between the two splittings, but also leads to an

admissibility correction with no conditional statement, and an efficient approximation

to Osher's approximate Riemann solver. These reconstruction and upwind steps result

in schemes that are uniformly second-order accurate and economical at smooth regions,

and yield high resolution at discontinuities.



1. Introduction. Among methodsfor the numericalsolution of conservationlaws

in general,and the Euler equationsin particular, upwind schemesarevery popular due

to their accurateshock-capturingcapability. Reviewarticles by the pioneersof these

methodsare readily available (Harten,Lax, and Van Leer 1983,Roe 1986,1989). Sev-

eral formulationsof upwind schemes,which generallyextend that of Godunov (1959),

exist [seealso Boris and Book (1973)]. Here, we essentially employ the projection-

evolution approachadvocatedby Van Leer (1979, 1985). In this approach,an upwind

schemeconsistsof two key steps: a reconstruction (projection) stepwhere,within each

cell, the data are approximatedby polynomials;and an upwind (evolution or approxi-

mate Riemannsolver) step wherethe averagefluxesat eachinterfaceareevaluatedby

a procedurethat takes into account the 'wind' (or 'wave') directions. The Godunov

schemeemploys the simplest reconstruction--the piecewiseconstant function--and

the most accurateupwind procedure---theexact solution of the Riemannproblem. Al-

though this method is only first-order accurate and computationally costly, it is the

basisof mostmodem upwind schemes.A great dealof effort hasbeenspentto enhance

•accuracyby usinghigher-orderpolynomialsin the reconstructionstep, and to improve

efficiencyby approximating the solution of the Riemann problem in the upwind step.

First, we discussthe reconstruction step. For simplicity, we consideronly linear

reconstructionshere. Accurate interpolations (linear and higherorder) are derivedby

assumingthat the data are smooth. If the data have a discontinuity, these interpo-

lations alwayscreate oscillations in the solutions. To prevent suchoscillations, Van

Leer (1974,1977,1979)introduced a monotouicity constraint for his MUSCL scheme:

the reconstructionmust preservethe monotonicity of the data. At a smooth region

with nonzeroslope,the constraint is redundant provided the meshis fineenough,and

the MUSCL schemeis second-orderaccurate. At a discontinuity, the constraint takes

effect to preventoscillations. A major drawbackof the constraint is that it also takes

effect adjacent to an extremumand causesaccuracyto degenerateto first order. In

other words, high resolution at discontinuities is obtained at the expenseof accuracy

near extrema. The popular total variation diminishing (TVD) schemes(Harten 1983,

Sweby1984,Roe 1985)sharethe sameadvantagesaswell asdisadvantagessincethey

satisfy Van Leer's monotonicity constraint.
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Harten and Osher (1987) solvedthe lossof accuracyproblem by introducing the

nonoscillatory piecewiselinear reconstruction, which involvesno constraint. Their

UNO schemeis uniformly second-orderaccurateand doesnot createoscillations, but

it is diffusive,e.g., it smearscontactdiscontinuities. The reasonfor this smearingeffect

is that, roughly speaking,the slopeof the UNO reconstruction is closestto zeroamong

all the slopesthat are second-orderaccurate(O(h2)); therefore, its error is one of the

largest in this class (Huynh 1993). Modifications of the UNO and ENO (Harten et

al. 1987) schemesto improve the resolution at contact discontinuities can be found

in Harten (1989), Yang (1990), and Mao (1991). Thesemodifications, however,are

somewhatcomplicated. For more developmentsof theseschemes,seeShu and Osher

(1989),Rogersonand Meiburg (1990),and Shu (1990). For a techniquethat sensesan
extremum and turns off the constraint there, seeLeonard and Niknafs (1991).

In Huynh (1989,1993),the author presenteda geometric frameworkin which Van
Leer's constraint can be combinedwith Harten and Osher's nonoscillatory interpola-

tion. For scalarconservationlaws, the resulting SONIC schemesareuniformly second-

order accurate and nonoscillatory. In addition, each TVD schemecorrespondsto a

SONIC counterpart, and the UNO schemeis the most diffusivememberof the SONIC

class.

In this paper,the author's approachis extendedto the systemof Euler equations.

Similar to the UNO scheme,we employ a five-point stencil for the reconstruction.

While the UNO slopeis 'closest' to zero, westart with the most accurateone for this

stencil: the slopeof the quartic through thesefive points. Next, since monotonicity
constraints are derived for the convectionequation, and characteristic variables are

the qu_.ntitiesthat are beingconvected,the constraints areapplied to thesevariables.

Our constraint consistsof two limits (bounds): the lower one, which assuresuniform

second-orderaccuracy,is definedby a slope similar to that of the UNO scheme;the

upper one, which controls oscillations, is derived by making use of the upper limit

for the MUSCL scheme.The constraint requires the final slopeto lie betweenthese

two limits. This requirement is conveniently enforcedby using the median function:

the final slopeis the medianof the quartic slopeand the abovetwo limits. As such,

the algorithm is costlier than that of the UNO scheme.To savecomputing time, we

presenta simplecriterion that detects the 'smooth' part of the data: if a cell is in the
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'smooth' region, then the monotonicity constraint has no effect, and the slope reduces

to the quartic formula for the primitive variables..With this criterion, the characteristic

variables and the constraints are necessary only for about six to eight cells around each

discontinuity. The resulting algorithm for the reconstruction step is therefore accurate

and efficient; however, it still smears a contact discontinuity, although to a lesser extent

than the MUSCL or UNO schemes. To improve the resolution in this situation, we

present a simple slope-steepening technique that has no effect at the smooth part of

the data and generally can resolve a contact discontinuity in four cells or less.

Once the slopes (space partial derivatives) are defined, the time partial derivatives

can be calculated by the non-conservation form of the Euler equations (Harten et

al. 1987, Roe 1989). At each interface, we can march half a time step via Taylor series

expansions, but the two adjacent cells yield two sets of results (states); we need to derive

one set of fluxes from these two states. This is azcomplished by one of the upwind

procedures discussed below. Note that this half-step calculation is a simplification

of an observation by Hancock (Van Albada, Van Leer, and Roberts 1982). It helps

simplify our algorithm at the 'smooth' part of the data (below); in addition, it makes

the treatment of source terms straightforward.

While the reconstruction step is mainly numerics, the upwind step is where physics

plays its role. There are several upwind procedures in the literature (Roe 1981, Steger

and Warming 1981, Osher and Solomon 1982, Van Leer 1982, Harten, Lax, and Van

Leer 1983, Roe and Pyke 1984, Roe 1986, Einfeldt 1988, Toro 1991, Liou and Steffen

1993). The most popular method is perhaps that of Roe, but the perfect one is yet

to be found (Roe 1989, Roberts 1990). Upwind procedures are generally perceived

as difficult to formulate and implement. In this paper, existing and new methods

employed are derived from a simple and unified point of view: the Euler equations

in conservation form are approximated by linearization and diagonalization. For the

flux-vector splitting introduced below, what is crucial is that the fixed state for the

linearizat_on is chosen so that the resulting fluxes depend continuously on the data,

and the left and right flux vectors are diagonalized by the same matrices, i.e., those

formed by the eigenvectors of the fixed state.

Since our reconstruction step already distinguishes between the 'smooth' and 'non-

smooth' parts, a different upwind flux can be applied to each part. At a 'smooth'
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interface, the left and right statesare closeto eachother, and a simple model is suffi-

cient; in fact, a sophisticatedone doesnot significantly improvethe results. Here,we

makeuseof Harten, Lax, and Van Leer'sone-intermediate-statemodel, which obtains

the flux via a scalar calculation. Combining with the quartic formula, at a smooth

region, the computing effort is therefore only slightly more than that of a central-

differenceschemewith artificial viscosity (Jameson,Schmidt,and Turkel 1981). Using

information from the reconstructionstep, we also presenta modification for the one-

intermediate-statemodel that can resolvecontact discontinuities. Neara discontinuity,

either this modified modelor a more accurateone, namely,Roe's flux-differencesplit-

ting (1981), is employed. Our presentationof Roe's method as a flux-vector splitting

(Stegerand Warming 1981)has the advantageof conceptualsimplicity. It alsoestab-

lishesa connectionbetweenthe two splittings. This connection,in turn, facilitates the

derivation of an admissibility (or entropy) correction with no conditional statement

for the flux-differencesplitting. In addition, it leadsto an efficient approximation to

Osher'sapproximate Riemann solver (Osherand Solomon1982),which is namedthe

simple-waveupwind flux.

At smooth regions--and generally,most of the flow field is smooth--the scheme

is accurate and economicaldue to the quartic formula and the one-intermediate-state

model. Near a discontinuity, the monotonicity constraint takeseffect to prevent oscil-

lations without causinga lossof accuracy. Moreover, the upwind step for this case,

viaeither Roe'sflux-differencesplitting with admissibility condition or the simple-wave

upwind flux, yieldshigh resolutionat shocksaswell ascontactdiscontinuities,andnon-

physical solutionsarealsoexcluded. The resulting schemesareefficient and, aswill be

shownby numerical experiments,their accuracycomparesfavorably with higher-order

schemes.

This paper is essentially self-contained and is organized as follows. In §2, we review

the various forms of the Euler equations and the corresponding characteristic variables.

The discretization and the half time step is carried out ill §3. The two main sections

4 and 5 are independent of each other: §4 deMs with the reconstruction step; §5, the

upwind step. The algorithm is extended to the case of flows with area variations in

§6. Numerical experiments are shown in §7. Finally, the discussion and conclusions

are presented in §8.
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2. Forms of the Euler equations of gas dynamics. The Euler equations axe

derived from the physical principles of conservation of mass, momentum, and energy.

In this form, called the conservation form, the equations are valid whether the flow is

smooth or has discontinuities. To assure correct shock speed (Lax 1954), therefore, we

solve the equations in conservation form. The problem thus reduces to a flux estimate

at each interface. To calculate this flux, we make use of the systems of equations in non-

conservation form for both the primitive and conservative variables. The characteristic

variables associated with each of these two systems also play an essential role: upwind

algorithms axe generally derived for a scalar convection equation; for systems, the

quantities that are being convected are the characteristic variables. We review the

various forms of the Euler equations in this section [see also Hirsch (1990)]. Different

approaches that make use of these forms can be found in Roe and Pyke (1984), Roe

(1986, 1989), and Toro (1991).

2.1. Conservation form. The one-dimensional flow of an inviscid and compress-

ible gas obeys the conservation laws for mass, momentum, and energy:

0u 0F(U)
0----i-+ 0_ = 0, (2.1a)

F = (m2/p)+ p , (2.1b,c)
(e + p)m/p/

where t is time, x distance, p density, m momentum, e total energy per unit volume,

and p pressure. Let 3' be the ratio of specific heats, then for a perfect gas, the system

is completed by the equation of state

p = (_ - 1)[_- m2/(ep)].

Denote by u the velocity, then m = pu, and the above yields

(2.2a)

p 1 2
e - + (2.2b)7- 1 _pu.

The flux vector is more commonly written as

F = pU 2 "t-p ;

(_+ p)u/
(2.2c)



the above expression is also convenient for the purpose of coding.

2.2. Primitive variables. With superscript T representing the transpose, let V

be the column vector of primitive variables,

V = (p, u,p) T. (2.3a)

At smooth regions of U, one can derive from (2.1-2) that

OV A 0V
_+ _-g; = 0, (2.3b)

where

Ap = u lip . (2.3c)

7P u

Equation (2.3b) for the primitive variables is of non-conservation (or non-divergent)

form. Let c be the speed of sound,

c=_. (2.4/

Then the eigenvalues of Ap are

A0) = u - c, A(2) = u, A(z) = u + c. (2.5)

One can easily verify that the columns of the following matrix are the right eigenvectors

corresponding to the above eigenvalues,

Rv= -- p 0 c/p .
0 c_

(2.6a)

Now set

Lp = R_-'; (2.6b)

then

o -p/(2c) 1/(2c2)Lp = 1 0 -11c 2 i, (2.6c)

0 p/(2c) 1/(2c 2) /

and the rows of Lp are the left eigenvectors of Ap. It follows from the definitions of l_

and Lp that

LpApR v = A, Ap = RvAL p, (2.7a, b)



where A(1) 0

A= o °o/.
0 0 A(3) )

Note that we do not need the subscript p for A because, as shown below, this matrix is

identical to that of the conservative variables. Also observe that the matrices Lp and

1_ are functions of p and c only (or p and p); they do not depend on u.

Next we define the characteristic variables associated with V. Let _r = (_, _t,/_)r

be a fixed state. Let __p, I_p, I_, and A be the corresponding matrices given by (2.3c),

(2.6c,a), and (2.7c). By linearizing (2.3b) at 9,

ov ). ov
o--/-+ _-_; = o. (2.8a)

Since Ak is a constant matrix, the above equation is linear; it is an approximation to

the nonlinear equation (2.3b) in a neighborhood of V provided that the. solution V is

smooth. By (2.7b),

In addition, because IL, is a constant matrix, and it is the inverse of 1_, equation (2.8a)

is equivalent to

---_OL,____y_V+ h OL,V _ O. (z.sb)
Ot Ox

We can now define the characteristic variables. Set

Wp = i_,pV; (2.9a)

then it follows from (2.6c) that

-[_/(2e)] u + [_/(2e_)]p_wp = p-[1/e:]p l,
[H(2_)] u + [1/(2_2)]p ]

(2.9b)

and (2.8b) takes the form

OWp ,iOWp
Ot + _ - O. (2.9c)

Because __. is a diagonal matrix, the above system is decoupled, and each component

corresponds to a convection equation of speed ¢t - 6, ¢t, and 72+ h, respectively. For

this reason, the components of Wp are called characteristic variables. Note that all
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componentsof Wp haveunits of density; asa result, a comparisonamongthem makes

sense.The secondcomponentcorrespondingto the speedfi is called the linear char-

acteristic; the other two are the nonlinearones.The abovecharacteristicvariablesare

simpler than thosedefinedfrom the conservativevariablesbelow.

2.3. Conservative variables. At smooth regionsof U, equation (2.1) can be

written in non-conservationform via the chainrule:

0u 0u
+ Ac=- = 0, (2.10a)

0-T &x

where Ac is the Jacobian matrix,

OF OF 0F

A°=SU = Op"Om'N "

A strmghtforward calculation using (2.2a) yields

0
A= = (7- 3)u2/2

(_ - 1)_3 - vue/p
1 o)(3 - _)_ _ - 1

-3(_- 1)u2/2+_/p _
(2.10c)

To diagonalize Ac, we make use of the transformation from the primitive variables

to the conservative ones (Warming, Beam, and Hyett 1975). This transformation will

also play a key role in the relations between the flux-vector and flux-difference splittings

later. Denote the Jacobian matrix of this transformation by M:

0u 0u 0u (2.11a)
M = O----V= ' Ou' "

Then it follows from the definitions of U and V and (2.2b) that

(:0 0)M = p 0 . (2.11b)

_/2 pu 1/(_-1)

As a result,

0 0)M -_ = -u/p lip 0 .

(.y- 1)u2/2 -(_- 1)_ _- 1
Next, we relate Ac and Ap by using M. Apply the chain rule to (2.10a),

M--_-+ A,M =0.

(2.11c)

(2.12)
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As a consequenceof the above and (2.3b),

Ap = M-1AcM. (2.13)

This fact can also be verified by carrying out the right hand side matrix multiplications

using (2.10c) and (2.11b,c); the result is identical to (2.3c). Substitute (2.13) into

(2.7a),

(LvM-1)Ac(MP_) = A. (2.14a)

Lc = LpM -x, Re = MRs. (2.14b, c)

Now _t

Then

LeAcl_ = A; (2.15)

the matrices Lc and R_ are the inverse of each other; the columns of Rc axe the right

eigenvectors of A_, and the rows of Lc, the left. Expressions (2.14c), (2.11b), and (2.6a)

Re= c tt u +c ,

uc u2/2 H + uc

yield

where H is the total enthalpy,

(2.16)

e + p u 2 7P u2 c2
H - - + - + --. (2.17)

p 2 (V-- l)p 2 "7--1

Similarly, from (2.14b), (2.11c), and (2.6c),

M/2+('7-1)M2/4 [-1-(7-1)M]/(2c) 1)/(2c2))

i- - 1)M2/2 (')'- 1)M/c _(_- 1)/c 2 /

Lc = -M/2_ ('7- 1)M_/4 [1- (7- 1)M]/(2c) ('7- 1)/(2c 2) ' (2.18)

where the Mach number M is defined by

M=u/c. (2.19)

Later, we will make use of the fact that L_ and Re depend only on any two of the three

variables u, H, and M; they do not depend on p. In fact, the matrix A¢ can also be

written in a form that only depends on u and H: by (2.17),

p = pH - e; (2.20)
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substituting the aboveinto (2.2b),

3,e__H + u2;
P

as a result,

(2.21)

0 1 0 )
Ac= (3"- 3)u2/2 (3- 3')u 3'- 1 . (2.22)

(3'- 1)u3/2 - ug -(3'- 1) u2 + H 3'u

The derivation and definition of the characteristic variables associated with U are

similar to those for V in (2.9): with [,c defined by (2.18) at a fixed state lJ, set

Wc = I, cU; (2.23a)

then it follows from (2.10a) and (2.15) that

OW_____A+ _OW_ _ 0. (2.23b)
Ot Ox

By (2.6c), Lp is sparse; by (2.18) I,_ is dense. Consequently, Wp is employed whenever

possible, and Wc is used only when necessary.

Before moving to the next section, we make the following remark. At smooth regions

of the solution, the three forms (2.1), (2.3), and (2.10) are equivalent; at a discontinuity,

however, only the conservation form (2.1) is valid. In each cell, therefore, since the

solution is assumed to be smooth, we can employ (2.3), i.e., the primitive variables,

for the purpose of reconstruction because it is the simplest of the three. Of course the

conservative variables (2.10) can be used for this step at the cost of extra computing

time. The results for these two reconstructions are essentially identical for the second-

order methods presented below. (Note that for higher-order methods, the advantage of

employing (2.3) over (2.10) is no longer clear because deriving accurate averages for the

primitive variables is more involved.) At an interface, however, there is a discontinuity;

consequently, we employ (2.1) to obtain the flux.

3. Discretization. Let xj = jh, j = 0,1,2,... be a uniform mesh, xj+x/2 =

(j + 1/2)h be the boundary between the jth and j + 1 cells, and t _ = nr be the time

level; here, h is the mesh size, and 7, the time step. Let U_ be an approximation to

the average value of the solution vector U in the j-th celt at time t _,

1_[x_+,/_U(x,t,_)dx ' (3.1)
Uj _-- h Jx___/_

11



wherethe integration actson eachcomponentof U. Assume that we know U_, for all

j; we want to calculate U_ +1, where the time step r satisfies the CFL condition

x(luj[ + cj) _ < 1. (3.2)

In this and the next two sections, we only consider the interior points; boundary

conditions employed in this paper are standard and will be addressed as needed.

To derive second-order methods, we use the midpoint rule:

U_ +1 - Uj + _j+_/2 - -j-1/2 = O,
r h

(3.3a)

or equivalently,

n T {]b__n+l/2 !_r_+l/2 _ (3.3b)U_ +1 = Uj + _-j-_/2 - "j+1/2 J"

For simplicity of notation, we omit the superscript n when there is no confusion; e.g.,

Uj denotes U_; the superscripts n + 1/2 and n + 1, however, are retained.
1_+1/2

The problem, therefore, reduces to estimating t_i+1/2 j from the data {Uj} (the

braces represent all j). To obtain these fluxes, we first calculate the primitive variables

{Vj) in a straightforward manner by their definitions. Next, in each jth cell, and for

t _ < t < t n+l, we approximate V(x,t) by a linear function Ri(x,t):

Rj(x, t) = Vj + (x- xi)S j + (t- t_)Tj, (3.4)

where Sj and Tj respectively approximate V,(zj, t _) and Vt(xj, t_). Suppose, for the

moment, Sj is known. We march to time t _+1/_ as follows. Since Vj is also known, Tj

can be estimated by using the equations for the primitive variables (2.3):

Tj = -(A.)j Sj. (3.5)

At time t _+1/2 and at the two interfaces of the jth cell,

h _-

Rj(Xj_l/2, t "+1/_) = Vi - _Sj + _Tj, (3.6a)

h r (3.6b)t = Vj + + 5Tj.

At each interface j + 1/2, we now have two values for the primitive variables: one from

the Taylor series expansion in the jth cell, namely, Rj(xj+_/2, t_+_/2); and one from
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that in the j + 1 cell, Rj+I (xj+i/2, t_+1/2). From these two values, we will calculate the

_L_n+I/2
flUX _'/+1/2 via one of the upwind procedures that employ the conservation form (2.1).

It is only here that the 'wind' (or 'wave') directions come into play.

As a result of the above arguments, the problem reduces to a slope estimate and

an upwind procedure for the flux. We remark that these two steps are independent of

each other.

Note that the calculation of the time partial derivative from the spatial one via (3.5)

was employed in the derivation of the Lax-Wendroff (1964) scheme. In the context of

reconstruction, this procedure for the conserwtive variables was observed by Hancock

(Van Albada, Van Leer, and Roberts 1982). It can be traced back to the Cauchy-

Kowalewsky theorem (Courant and Hilbert 1962, Harten et al. 1987).

4. Slope estimates. This section deals only with interpolations and constraints;

the 'wind' direction does not play any role. When the data are smooth, accurate

formulas for the slope are readily available (parabolic or quartic). Near a discontinuity,

however, such formulas are no longer accurate; in fact, they yield a poor representation

of the data and create oscillations in the solutions. By imposing various constraints on

the slope, a better representation of the data can be obtained; the resulting schemes

are generally also free from oscillations. The constraints should be designed so that

at smooth regions of the data, they have no effect; i.e., they do not alter the original

slope. The monotonicity constraint presented below consists of two limits (bounds): a

lower one, which is 'closest' to zero among all slopes that are accurate to O(h2); and an

upper one, which prevents the slope from becoming too steep. The constraint requires

that the final slope lies between these two limits.

4.1. Constraints for the slopes. To be precise, we need a few definitions. Let

zl,..., zk be real numbers, and let

a = min(z,,..., zk), ;3 = max(zl,...,Zk). (4.1)

We define I [zl,..., zk] to be the smallest closed interval containing zl,..., zk; i.e.,

I

Next, let the median of three numbers be the one that lies between the other two.

Then it follows that the median lies in the interval defined by any two of the three
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arguments;e.g., if x, y, and z are real numbers, then

median(x,y,z) e I[x,y], median(x,y,z) e I[y,z]. (4.2)

It is very convenient to enforce a constraint by using the median function. As an

example, suppose Yl and y2 are the two limits for a quantity y; i.e., the constraint is

that y lies in the interval I [yl, y2]. Then this constraint is satisfied by yf If for final)

defined by

yf = median(y, yl,y2). (4.3)

Note that if y lies between yl and y2, then yf = y, and the constraint does not alter the

original estimate. If y lies outside the interval I [Yl,y2], then between the two values

yl and y2, yf equals the one that is closer to y.

We now make an observation concerning accuracy: if two of the three arguments

are accurate to a certain order, then the median yields a value that is accurate to the

same order. More precisely, suppose x and y approximate an exact value y to O(h_);

then median (x, y, z) is also accurate to O(h k) regardless of the value z:

median(x,y,z) = _ + O(hk). (4.4)

Indeed, since x and y are accurate to O(hk), so is any value between x and y. By (4.2),

median (x, y, z) lies between x and y; as a result, it is accurate to the same order.

With zl,... ,zk being real numbers, let minmod(zl,... ,zk) be the function which

returns the smallest argument if all arguments are positive, the largest if they are all

negative, and 0 otherwise. This definition is equivalent to

minmod (zl,..., zk) = median (a, 8, 0) (4.5a)

where a and/_ are given by (4.1). For the purpose of coding,

minmod (zl,..., zk) = s min(Iz_l,..., Iz_l) (4.5b)

where

s--- ½[sgn(zl)+sgu(z2)]}[sgn(z_)+sgu(z3)l...½lsgu(zx)-t-sgu(zk)[, (4.5c)

and sgu (z) = 1 if z is positive; sgn (z) = -1 if z is negative. In the above formula

for s, the expression within the square brackets yields the appropriate sign. Note that
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there is only one set of squarebrackets, but there are severalsets of absolutevalue

sign. Clearly, if any two argumentsareof opposite sign, then oneof them must be of

oppositesign with zl; consequently, s = 0. In general, s equals either -1, 0, or 1. Also

observe that if any argument zi equals 0, then it does not matter whether sgn (zi) is

defined as -1, 0, or 1 in (4.5c) since the resulting minmod, by (4.5b), is 0.

With two arguments x and y, minmod (x, y) is simply the median of x, y, and 0.

In this case, expressions (4.5b,c) reduce to

1
minmod (x, y) = 7 [sgn (x) + sgn (y)] min(lx l, ]Y[)- (4.6)

The minmod function is more commonly defined as

{minmod (x, y) = sgn(x) min(lxl, 191) if xy > o,
0 otherwise

(e.g., Harten 1983, Sweby 1984, Harten and Osher 1987).

For convenience of programming, we express the median function in terms of min-

mod:

median(x,y,z) = x + minmod(y - x,z- z)

= y + minmod(z - y,z - y) (4.7)

1 (z (ly xl, Iz=x+_[sgn(y-x)+sgn -x)]min - -xl).

Let the extended-minmod function xm (x, y) be defined by

(x, = median(x,y,-x - y). (4.8a)

(In terms of Sweby's limiter function (1984), xm (x, y) = x median (1, r, -1 - r) where

r = y/x.) It follows from (4.7) that

1
xm(x,y) = -(x + y) + _ [sgn (2x + y) + sgn (2y + x)] min (]2x + yl,[2y + xl). (4.8b)

As explained below, the above function is sfightly different from the minmod func-

tion. If x and y are of the same sign, then the two functions return the same value,

namely, the one with smaller modulus. If x and y are of opposite sign, however, the

minmod function returns 0, while the extended-minmod returns the value with smaller

modulus provided that Ix�y[ > 2 or Ix�y[ < 1/2 [see also expression (2.27) in Huynh

(1993)]. Loosely speaking, the extended minmod function returns the argument of

15



smallermodulusnearly all the time, and next to a discontinuity, it preservesthe slope

of the smoothsidemore often than the minmod function.

We are now ready for the constraint. Sincemonotonicity constraints are derived

for the convectionequation (Van Leer 1977), and the characteristic variablesare the

quantities that are being convected,we interpolate Wp, the characteristic variables

associatedwith Y definedin (2.9) [seealso Roe and Pyke (1984),Roe (1986),Harten

and Osher(1987)]. In the rest of this section,we only deal with Wp; as a result, for

simplicity of notation, wedrop the subscriptp.

Let j be a fixed index. Let V = Vj in (2.8); that is, we linearize the equations

for the primitive variables at Vj. Since we use a five-point stencil, for -2 < l < 2,

employing (2.9b), set

-[pi/(2cj)l u_+t + [1/(2c211p +,' W, = LVj+, = pj+, - [1/c_]pj+, l; (4.9)

[pj/(2cj)]uj+, + [1/(2c_)]pj+t ]

again, L is the matrix of left eigenvectors at the state Vj. Let wt be any component

of Wt, say, the first component, for -2 < l < 2. We obtain the final slope for this

component as follows. Let s+ and s_ be slopes of the linear interpolations:

s+ = (w, - Wo)/h; s_ = (wo - w_,)/h. (4.10a, b)

Let p_, p0, and p+ be the slopes at l = 0 of the three quadratics defined respectively

by {w-2, w-l,Wo}, {w__,Wo, Wl},and {Wo, W_,W2}:

p_ = (w_2 -4w_t + 3Wo)/(2h), (4.11a)

p0= (w, - (4.11b)

p+ = (-w2 + 4wl - 3Wo)/(2h). (4.11c)

Note that the three slopes above are accurate to O(h_). Next, between l = 0 and I = 1,

the slope s+ does not oscillate, but it approximates the exact slope at l = 0 only to

O(h). To obtain a slope that is accurate to O(h 2) and does not oscillate, we simply

use the median function:

q+ = median (s+, p+, Po), (4.12a)
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and by symmetry,

q_ = median (s_, p_, p0). (4.12b)

For further details, see §3 of Huynh (1993). Between the two slopes above, we take,

roughly speaking, the less steep one,

q. = (q+,q_). (4.12c)

The slope q. is clearly accurate to O(h:) because by (4.8a) and (4.2), it lies between

q_ and q+. It behaves very much like the UNO slope of Harten and Osher (1987): the

resulting scheme is uniformly second-order accurate and does not create oscillations.

Because it is (loosely speaking) closest to zero among all slopes that are accurate to

O(h2), the scheme shares the property of being diffusive with the first-order upwind

method (slope equals zero) but to a much lesser extent. Note that if the extended

minmod function in (4.12c) is replaced by the minmod function, then the result is the

UNO slope. The extended minmod function, however, has the advantage of preserving

the slope of the smooth side more often near a discontinuity. More importantly, while

the UNO slope is the final one, the slope (4.12c) is employed only as one of the two

bounds (the lower limit) for the monotonicity constraint described below.

Next, we define the other bound (upper limit). The following monotonicity con-

straint was presented by Van Leer (1974, 1977): for the cell l = 0, if the linear re-

construction takes values in I [w-l, w0, wl], then it does not create oscillations in the

solution. This constraint is very simple; however, it causes a loss of accuracy near

extrema. We present a constraint that preserves uniform second-order accuracy below.

The argument to the right of l = 0 is carried out first. Van Leer's constraint can be

restated as follows. The reconstruction to the right of l = 0 (x i _ x _ xj+l/2) takes

values in I[wo, wl]; that is, the final slope qf lies between 0 and 2s+ (see Fig. 4.1).

It is the limit 0 that causes accuracy to degenerate near extrema. To obtain uniform

second-order accuracy, we require that the final slope lies between q. and 2s+, where

q. is defined by (4.12c). The requirement to the left of I = 0 is that q] lies between q.

and 2s_. The two requirements together result in the following constraint: the final

slope lies in the intersection of the two intervals I [q., 2s_] and I [q., 2s+]. Clearly, one

end of this intersection interval is q.; the other is

q* = median (q., 2s_, 2s+ ). (4.13)
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Figure 4.1. Van Leer's constraint.

Thus the constraint takes the form

ql C I [q., q*].

Having obtained the two limits, we now define an accurate slope. Using the quartic

(five-point) formula, set

qs = (w-2 -- 8w_1 + 8wl -- w2)/(12h). (4.14)

The above slope is highly accurate; however, near a discontinuity, it may have the

wrong sign (see Fig. 4.2). We avoid this problem by requiring that q5 lies between to0

and p,_ where

p,_ = median (p_, p+, po). (4.15a)

To bring q5 into the interval I [po,pm], we once again use the median function:

qs = median (qs, p_, po). (4.15b)

Observe that at the smooth part of the data, q6 is generally identical to qs; that

is, pm and p0 provide plenty of 'room' for an accurate slope. Indeed, without loss of

generality, we may assume xj = O, and the Taylor series expansion of the exact solution

we takes the form

we(x) = sx + dx 2 + ex 3 -4- O(h 4)
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Figure 4.2. The quartic slope may have the wrong sign.

[see §3.5 of Huynh (1993)]. Then, by omitting higher-order terms,

p_ = s - 2eh 2, po = s + eh 2, p+ = s - 2eh 2.

The interval I [P0, pro] is therefore equal to I [s - 2eh 2, s + eh2], which contains the exact

slope s, and the above observation follows. (Also note that instead of the requirement

that qs lies between p0 and p,_, we can insist that q5 lies between q_ and q+, and thus

save one median calculation. This latter constraint, however, does not provide as much

'room' as the former, i.e., it alters qs more often.)

Finally, using the median function, we limit qs,

qI = median (q6, q., q'). (4.16)

Since q, and (/6 are accurate to O(h_), the above ql is also accurate to the same order

by observation (4.4).

A remark concerning the effect of constraint (4.16) is in order. At the smooth part

of the data where the slope is nonzero, expression (4.16) yields qf = q6 because q, is

closer to 0 than q6, and q" is further from 0. Near an extremum, the interval I [q., q']

may reduce to the point {q.}, and in this case, qf = q. (see Fig. 4.3(a)). It is here

that our monotonicity constraint preserves second-order accuracy while that of Van
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Figure 4.3. Effects of the new constraint.

Leer may not. Near a discontinuity, or where the data change rapidly, the slope (/6 is

generally steeper than q*, and the final slope is identical to q*, which is either 2s+ or

2s_ (see Fig. 4.3(b)).

Let the final slopes by the algorithm (4.10-16) for the three components of Wl be

q_X), q(/), and q_3). Let

qy = (qO), qy(2),qf(3)\T) . (4.17)

The slopes of the primitive variables axe obtained by

sj = l_Q_ = R_Q_ (4.18)

where Rj is the matrix formed by the right eigenvectors given in (2.6a). This expression

completes the slope estimates.

Note that (4.15) and (4.16) can be replaced by

qy = q. + minmod (q6 - q., 2s+ - q., 2s_ - q.). (4.19)

We also remark that in the case of linear convection, with an appropriate definition

of monotonicity of the data in an interval (Huynh 1993), it can be shown that the

2O



slope defined by (4.10-16) yields a scheme that preserves monotonicity and is uniformly

second-order accurate (to appear).

4.2. Smooth regions. The above constraints are constructed so that they have

little or no effect at the smooth part of the data. For such a region, the slope reduces to

the quartic formula for the primitive variables. More precisely, suppose the constraints

(4.15b) and (4.16) have no effect at the jth cell. Then, since qf -- qs, and multiplication

by a constant commutes with matrix multiplication, it follows from (4.13) that

Qs = [LVj_2 - L(8vj_I) + L(svj+I) - Lvj+2]/(t2h). (4.20)

Because R and [, are the inverse of each other, (4.18) and the above yield

Sj = (Vj-2 - 8V/__ + 8Vj+I - Vj+2)/(12h), (4.21)

which is the quartic formula for the primitive variables.

Next, we present a simple criterion which detects the 'smooth' regions where the

constraints have no effect, and as shown above, the slope is then given by (4.21). For

a wide class of problems--including all the test problems below--a discontinuity in

the flow field leads to a discontinuity in the density field. As a result, to separate

discontinuities from smooth regions, it suffices to test the density field. (For highly

complex problems, we may need to test more than one field.) Let A_p be the second

difference of p:

A_p = Pj-1 -- 2pj + Pj+i. (4.22)

For each index j, let kj be a flag that is set as follows: if

2 2
Aj+IP_ Aj__p 5 4 5

4 < <4' and -< <4' (4.23a, b)5- a p- 5-

the n kj = 1, and the flow is considered to be 'smooth' in the jth cell; otherwise, kj = 0.

(We remark that in the case of linear convection, the factors 4/5 and 5/4 are replaced

by 2/3 and 3/2, and it can be shown that a constraint slightly more general than

(4.16) has no effect on the original slope. This general constraint was employed for

cubic interpolation in §3.4 in (Huynh 1993). The factors 4/5 and 5/4 are chosen by

numerical experiments to account for nonlinearity as well as the fact that only one out
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of three fields are tested. In fact, the more relaxed factors 2/3 and 3/2 axesufficient

for all of our test casesexcept the interacting-blast-waveproblem of Woodwardand

Colella (1984).)

For the purpose of coding, observe that the following statement is equivalent to

(4.23a): Aj_lP2 lies between (4/5)A_p and (5/4)A_p. That is,

Thus, if we set

and

<0

= 4 2 _ s 2 j-lP)aj (gAjp A__lp ) (-_Ajp- A' , (4.24a)

(4.24c)

In this paper, all numerical

4 2 __ 2 5 2 2

then conditions (4.23) axe equivalent to max(a/, bj) _< 0. In practice, we allow for some

noise in the data because they axe quickly damped out by the scheme. Conditions

(4.23) axe coded as

max(aj, bj) < epj.

where e is a small number, typically, e = 10 -s or 10 -4.

tests employ e - 5 × 10 -s. The corresponding expression for kj is

( 1 if (4.24c) holds, (4.25)kj = 0 otherwise.

Roughly speaking, if kj = 1, then the data are 'smooth' at xj, and the slope Sj is given

by (4.21). Otherwise, the constraint may take effect, and the estimate for Sj is given

by (4.9-18).

Notice that at the 'smooth' regions (kj = 1), the quartic formula (4.21) can be

replaced by the parabolic one (similar to (4.lib)), which has a three-point stencil; the

results are generally slightly more diffusive.

4.3. A slope-steepening technique. The above slope estimate results in a

scheme that is effective, uniformly second-order accurate, and does not create oscilla-

tions, but it still slightly smears a contact discontinuity, although to a lesser extent

than the MUSCL or UNO schemes. The reason for this smearing is that near a dis-

continuit_r, the constraints help prevent oscillations by bringing the slope closer to zero
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when necessary,but they do not steepenthe slopeto the maximum allowablevalue,

which keepsthe discontinuity from smearing. In the caseof a shock, the characteris-

tics converge;the shock remainscrisp, and no modification is needed.For a contact

discontinuity, however,the characteristicsareparallel; there is noself-steepeningmech-

anism, and smearingtakes place. To keep contact discontinuities sharp, Colella and

Woodward (1984) presenteda criterion to detect them, and in that case,a steeper

reconstructionis employedfor their piecewiseparabolic method. For other techniques,

seeHarten (1989),Yang (1990),and Mao (1991). Our approachis somewhatdifferent:

the slopesteepeningshould take effect near a discontinuity but have no effect at the

smoothpart of the data.

The following simplealgorithm cangenerally resolvea contact discontinuity in four

cellsor less;it is applied only to the linear characteristic, i.e., the secondcomponent

of W_. For this component,with q_ and q+ given by (4.12), qs by (4.15b), _ a fixed

constant which typically equals 5, we reset q6 to

q6 +- sgn (q6)max(_lq+ - q-], [q6l). (4.26)

Then we apply (4.16) to obtain the final slope.

To see the effect of the above expression, observe that at the smooth part of the

data, since both q_ and q+ approximate the exact slope at l = 0 to O(h2), the quantity

]q+ - q_] is a small number of order O(h2). As a result, except for a neighborhood of

length O(h 2) around an extremum where the original q6 is too close to 0, expression

(4.26) does not alter q6. (We need not pay attention to this neighborhood because the

constraint (4.16) will make the final slope ql = q-.) Loosely speaking, (4.26) has no

effect at the smooth part of the data. Near a discontinuity, on the other hand, q_ and

q+ are far apart, and x]q+ -q_[ becomes a large number; consequently, the slope q6 by

(4.26) is considerably steeper than the original q6.

For readers who are familiar with limiter functions, the following remark explains

(4.26) from this point of view (see Fig. 4.4). Strictly speaking, the explanation is

incorrect, but it conveys the idea. Consider the case of q_ and q+ both being positive.

Set x = 5, r = q+/q_, then

5lq+ -q-I = (@:- ll)q-.
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Figure 4.4. Slope steepening explained via Iimiter function.

The lines g(r) = +5(r- 1) intersect g(r) = (r + 1)/2 at r = 9/11 and r = 11/9. The

lines g(r) = 5(r- 1) and g(r) = 2 intersect at r = 7/5; g(r) = -5(r- 1) and g(r) = 2r,

at r = 5/7. Roughly, for r between 9/11 and 11/9, expression (4.26) does not alter

the original q6, which is represented by g(r) = (r + 1)/2. But for 5/7 < r < 9/11

or 11/9 < r < 7/5, expression (4.26) steepens q6, and the result can be even more

compressive than the 'Superbee' limiter function (Roe 1985). Also note that since

both q_ and q+ are accurate to O(hZ), at most of the smooth regions, r lies between

9/11 and 11/9, and (4.26) has no effect. Near a discontinuity, it takes effect and

steepens the slope considerably. The final constraint (4.16) then limits the slope to

assure that no oscillations are created (r < 5/7 or r > 7/5).

Certain contact discontinuities, such as those resulting from a shock interacting with

another shock, are extremely difficult to resolve. Even highly compressive methods like

Roe's 'Superbee' scheme may smear them. The above technique can be used to capture

such discontinuities by setting _; = 10, or even 20. For such large _;, the slope steepening

(4.26) may take effect at the smooth part of the data; consequently, it should be applied

sparingly, for example, only when the strength of the linear characteristic dominates

that of the other two. This condition is quantified below: for the ith component of
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Wl, l<i<3, set

w(001+l (00
I _ "--2 °

Then the linear characteristic is said to dominate the other two if

(4.27a)

cr(_) > 2(_r(1) + g(3)).

(The factor 2 is found by numerical experiments; the results generally vary only slightly

if a different factor is chosen.) In this case we also reset kj:

kj = -2. (4.28)

As noted at the end of §2.3, all a(0 have units of density; consequently, a comparison

among them makes sense.

We summarize the slope estimate below.

Algorithm for the slope. Given the conservative variables {U/}, calculate the prim-

itive variables {Vj}, and {A_p} by (4.22). For each index j, compute aj and bj by

(4.24a, b). Next consider the foIlowing two cases.

(a) If (4.24c) is satisfied, the ceil is in the 'smooth' region; set kj = 1; define Sj by

the quartic formula (4.21); then move on to the next index.

(b) Otherwise, set k i = 0, and for-2 < l _< 2, calculate W, by (4.9). For each

component i, 1 < i < 3, obtain cr(O by (4.27a). If (4.27b) holds, i.e., the linear

characteristic is dominant, reset kj = -2. Next, for each i, 1 < i < 3, calculate

q_O by (4.10-16); while estimating q(7 ), however, after obtaining q6 via (4.15b),

if kj -- -2, reset q6 by (4.26) before carrying out (4.16). Having obtained Q/,

calculate Sj by (4.18). Then move on to the next index.

Note that instead of (or in addition to) (4.27b), one can employ a more sophisticated

criterion to detect a contact discontinuity without much penalty in computing time (at

least, for scalar computers) because generally, the flow field is mostly 'smooth', i.e.,

(4.24c) holds.

For comparison, we next present the slopes of three popular TVD (total variation

diminishing) schemes. With s_ and s+ defined by (4.10), instead of (4.11-16) the

minmod scheme (Harten, 1983) is given by

qf = minmod (s_, s+); (4.29)
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Van Leer's averagelimiter (1977),

q/= minmod[(s_ + s+)/2,2s_,2s+]; (4.30)

and the 'Superbee' scheme (Roe and BaJnes 1984, Roe 1985),

q/= minmod [sgn (s_)max(Is_l, ]s+l),2s_,2s+]. (4.31)

We remark that if s_ and s+ are of opposite sign, the three expressions above return 0

for the slope. Expression (4.30) can also be written as

1
q/---- _[sgn (s_)+ sgn (s+)] min(ls_ + s+l/2,2ls-l,21s+J);

similarly, (4.31) is equivalent to

qf = ½[sgn (s_) + sgn (s+)] rain [max(Is-I, Is+J), 21s-I, 218+1].

Compared with the TVD schemes, which are only first-order accurate near extrema,

the slope estimate for our scheme has the disadvantage of being more involved in terms

of coding, but it has three distinct advantages: it is both accurate and economical at

smooth regions, and it gives high resolution at contact discontinuities.

The author's SONIC-A scheme, which is a uniformly second-order extension of Van

Leer's average fimiter, is defined by

qf = median[(q_ + q+)/2,q.,q'].

The SONIC-B scheme, which extends 'Superbee', is given by

q/= median [sgn (q.) max([q_[, [q+[), q., q'].

Due to the use of q_ and q+ instead of s_ and s+, the above slopes yield uniformly

second-order accurate schemes. Note that at the 'smooth' part of the data, these slopes

do not simplify easily; in contrast, the slope presented in the algorithm summarized

above does.

5. Upwind flux. With the slope {Sj} defined in the previous section, one can

calculate the time partial derivative by (3.5) and obtain the interface values at time

t _+1/_ by (3.6a,b). Let j + 1/2 be a fixed interface, and let

VL = Rj(xj+l/2, t"+x/2), VR = Rj+l(zj+l/2, t"+x/2), (5.1)
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wherethe reconstructionvaluesaregivenin (3.6). From the aboveleft and right states,

wederive a flux denotedby Fu via one of the upwind proceduresbelow.

In this section,time t is employed only for convenience of derivation; the final flux

Fu is independent of time. Let the conservative variables corresponding to VL and

Vn be denoted by UL and Un. Consider the conservation laws (2.1) with the initial

condition at t = 0:

u=(UL if x_<0, (5.2)UR otherwise.

The above problem is called the Riemann problem. The exact solution, which only

depends on UL, Un, and x/t, is known (e.g., Godunov 1959, Van Leer 1979, Holt

1984, Gottlieb and Groth 1988, Hirsch 1990). It is a constant along each ray (half line)

x = At where the speed A is fixed and t > 0. An approximation Fu for the flux at

x = 0 (or A = 0) and t > 0, called an upwind flux (or approximate Riemann solver), is

sufficient for the purpose of calculation. In fact, these approximations are sometimes

called alternative Riemann solvers because they can be more diffusive than the exact

solution, and may occasionally produce smoother (more accurate) solutions for (3.3)

as in the case of a slowly moving shock wave (Roe 1989). Notice that the coordinates

have been shifted so that (xj+l/2, t '_+_/2) in (5.1) now corresponds to (z = 0, t = 0).

At an interface in the smooth region, VL and Vn are generally different, but close

to each other. As a matter of fact, for such an interface, Vn -VL is an O(h 2) quantity;

consequently, for simplicity and economy, we may derive Fu via the non-conservation

form (2.3). This method is called the primitive-variable splitting, which can be consid-

ered as a simphfication of Toro's approximate Riemann solver (1991); it is carried out

in §5.1. On the other hand, although VL and Vn are close, they are generally different;

in that case, there is a discontinuity in the initial condition. Theoretically, therefore,

only the conservation form (2.1) is valid. The simplest model that employs (2.1) is

perhaps the one-intermediate-state model by Harten, Lax, and Van Leer (1983), which

resolves the two acoustic waves, but ignores the contact discontinuity. This model

turns out to be more economical than the primitive-variable splitting; in addition, at

smooth regions, it performs as well as Roe's flux-difference splitting with roughly a 35

percent savings in (total) computing time.

Near a discontinuity, Vn - VL is O(1), and the flux also has an error O(1). Con-

sequently, we have to take extra care: if the model is inadequate, this error may
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propagatethroughout the flow field and causeaccuracyto degenerate.For suchan in-

terface, weemploy a flux-vector splitting derivedby linearization and diagonalization.

It will be shown that this flux-vector splitting, which is conceptually simple, yields a

result identical to Roe's flux-differencesplitting, which is computationally simple. Our

derivation alsoleadsto an admissibility correction with no conditional statementand

an economicalapproximation to Osher'sapproximate Riemannsolver.

For convenienceof notation, with the initial condition (5.2), denote

,A,U---- U R-UL; (5.3)

similarly, AF = FR - FL, and Apu = paun - pLUL, etc. Notice that the operation A

is finear, i.e., for any functions f, g, and constants a,/3,

A(af + _g) = aAf + 13Ag.

5.1. Primitive-variable splitting. Among the subsequent upwind fluxes, this is

the only one that employs the nonconservation form (2.3). It is perhaps the simplest

model where the 'wind' directions play their roles. As mentioned above, it should

only be employed at 'smooth' interfaces. More precisely, with k i defined by (4.25) and

(4.28), set

kj+x/_ - k.i + ks+l. (5.4)

Then this flux is used only when kj+l/2 = 2. For a similar method, which employs

(2.3) with a more sophisticated fixed state for the linearization and a slightly more

complex calculation involving the left and right states of the contact discontinuity, see

Toro (1991).

With the initial condition VL and VR, we linearize the Euler equations (2.1) at the

average state

=  (vL + vR). (5.5)

Next, equations (2.8a) for the primitive variables are diagonalized as shown in (2.8b).

The characteristic variables corresponding to the initial condition VL and VR are given

by (2.9a),

Wp,L = [,pVL, and Wp,R = LpVR. (5.6a, b)

28



By (2.8b), eachcomponentof thesevariablesis advectedwith speed_(0. Consequently,

the upwind characteristic vaviableWp,v is determined by the 'wind' direction or the

sign of _(0:

Wp,L if _ > 0, (5.6c)
Wp,U I.wp,n otherwise

where, for convenience, the superscript (i) is understood. In both cases, the above

expression is equivalent to

Ip,U 2 IP, L

= ½ [Wp,L + wp,R] -- ½sgn (_)[wp,a -- Wp,L].

Denote by sgn (/k) the diagonal matrix whose diagonal entries ave sgn (_(0), i = 1, 2,

3; then

1 w ,R)Wp,u = _(Wp,L "3u --

To obtain the corresponding primitive variable Vu, multiply the above equation on

the left by I_, and by (5.6a,b),

vu =  (vL1+ vR) - sgn (5.7)

where the operation A is defined in (5.3). Finally, the upwind flux is the flux of the

above state.

The following remark is in order. If _ = 0, then should we select wp,v = Wp,L or

wp,tr = wp,n in (5.6c)? Since the fluxes resulting from these two quantities are generally

not identical, the final upwind flux does not depend continuously on the data. At a

smooth interface, this discrepency is not critical, and the above upwind flux performs

well; near a discontinuity, however, it may create oscillations in the solutions. By using

the conservation form (2.1), one can derive upwind fluxes that depend continuously on

the data; in fact, all of the subsequent methods share this property.

5.2. One-intermediate-state model. This model, introduced by Havten, Lax,

and Van Leer (1983), is independent from all other upwind models presented here.

Instead of using diagonalization, it approximates the solution of the Riemann problem

(5.2) by three constant states: UL, UR, and an intermediate state denoted by UI. Our
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presentationbelow is slightly simpler than the original one. Similar to the primitive-

variable splitting, this flux is employedat 'smooth' interfaces. At 'nonsmooth' in-

terfaces(kj+l/2 < 2), together with a modification to resolvecontact discontinuities

presentedbelow, it canalso be used.

Our choiceof wavespeedsis most economical:with the averagestate V definedin

(5.5) and _ the correspondingspeedof sound,let the minimum (subscript l) and the

maximum (subscript r) wave speeds be

al = _ - g:, a_ = _ + 5. (5.8a, b)

The corresponding Mach numbers are

al ar
= -:, M_ - - M- 1, Mr - - 1(4 + 1. (5.8c, d,e)

c _

For a more sophisticated choice of wave speeds, see Einfeldt (1988). Next, the top

half of the (x, t)-plane is divided into three regions separated by the two half lines

x = a# and x = art (see Fig. 5.1). For the left region, the solution is assumed to

be the constant state UL; for the right, Un; and for the middle region, Ur, which is

determined below. Let r > 0 be a fixed (provisionary only) time step. Consider the

control volume whose four corners are (a_r, 0), (a_r, r), (art, r), (art, 0). By balancing

the fluxes for (integrating (2.1a) over) this control volume,

7"(at- al)VI = T(arUR- alUL)- T(FR--FL).

As a result,
arVR -- alUL FR -- FL

U_ -- (5.9)
ar -- at ar -- al

Note that r no longer appears in the above expression.

We are now ready to derive the upwind flux. For the moment, suppose at < 0 and

ar > 0. By balancing the fluxes for the control volume with corners (alr, 0), (azr, r),

(0,T), and (0,0),
--TalUi = --ralUL -- r(Fv -- FL).

As a result,

Fu -- FL + al(Ui - UL). (5.10a)
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Figure 5.1. The one-intermediate-state model.

Similarly, for the control volume with corners (0, 0), (0, r), (ant, r), and (ant, 0),

Fu = Fn + an(U1 - Un). (5.1oh)

Note that the above two Fu are identical by (5.9). Multiply (5.10a) by an, (5.10b) by

-al, and then add the results,

--al an alan
Fu - FR + --FL + --(UR -- UL). (5.10c)

an -- a ! an -- al an -- al

Thus the flux Fu is a weighted average of the left and right fluxes plus an 'artificial

viscosity' term. Note that the above expression involves only scalar operations and

no matrix multiplications. Next, if al > 0 then Fu = FL; similarly if an < 0 then

Fu = Fn. That is,

FL if 0 < al,

-at ar FL _--_z-(UR UL) if al < 0 < an,Fu __,_ Fn + _ + - (5.11a)

Fn if an _< O.

Observe that if a: = 0, then (5.10c) yields Fu = FL; similarly, if an = 0, it implies

Fu = Fn. As a result, the above expression for Fu depends continuously on the data.

Using the Mach numbers defined in (5.Sc,d,e),

FLFu = _(-M_Fn + M_FL) + _M_Mn_(Un- UL)

Fn

if 0 < Ml,

ifM: < 0 < Mn,

if Mn < 0.

(5.11b)
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The above expression can be combined into a single formula:

Fu= ½[(Mr--M,-)Fn+(M_+-M,+)FL]+_M,-Mr+_[UR-UL] (5.11c)

where for any real number z, the negative and positive parts of z are

z- = min(z,0) = ½(z - [z[), z+=max(z,O)= ½(z + [z[). (5.12)

We summarize the algorithm below.

Algorithm for an upwind flux via the one-intermediate-state model. At a

'smooth'interface where ki+1/2 = 2, with V L a32d V R given by (5.1), first calcu/ate the

average state V by (5.5); next obtain the Mach numbers .f/I, Ml, and Mr by (5.8c, d,e);

fin ly, rv is givenby (5.11b)or (5.11c).

Notice that if the maximum and minimum wave speeds are defined as

at ------(Jill Jr c), ar ---- Ifi[ -k c, (5.13a)

then (5.1 la) reduces to

1 FR) 1^ e)(uR uL), (5.13b)Fu = _(FL + -- 5([u[ + --

which is a 'central difference' plus an 'artificial viscosity' term. This simple formula

is due to Rusanov (1961) [see also Anderson, Thomas, and Van Leer (1985), Yee

(1987), and Davis (1988)]. Generally, it saves about 6 percent of total computing

time compared with (5.11), and it performs well for all of our tests except for the Lax

problem in §7.

The one-intermediate-state model (5.11) is economical and produces good results

at smooth regions. It also handles shocks well; however, it cannot resolve a contact

discontinuity accurately since the model does not contain a contact.

We remedy this problem by the following simple technique. At an interface j + 1/2,

the linear characteristic is said to be dominant if

kj+l/2 < 0 (5.14a)

where kj+l/2 is defined by (5.4). In this case, we reset pn to PL if fi > 0, and reset PL

to pn ifi < 0:

if 37/_>0, Pn_PL; if /1)/<0, PL_Pn. (5.14b, c)
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In other words,nearacontact discontinuity,densityis determinedby the flowdirection.

Note that velocitiesand pressuresarenot altered. The flux Fu is then calculated by

(5.5), (5.8), and (5.115)or (5.11c).

With the abovemodification, themodel workswell for all the standard testsexcept

the Mach3expansionshockin §7;i.e., it may admit non-physicalsolutions (alsoknown

as solutions that violate the entropy condition). Further modifications can be made

sothat non-physicalsolutionsareexcluded;e.g., at a 'nonsmooth' index j + 1/2, i.e.,

kj+l/2 < 1, instead of (5.5), al and a_ can be defined by

al = min(uL -- CL, uR -- cR), a_ = max(uL + CL, Un + Ca).

Such calculations involve two speeds of sound and take more computing time than

(5.5). We will not elaborate on different definitions for al and a_ any further; instead,

we present below an estimate for Fu that has two intermediate states, and with an

admissibility condition, it excludes non-physical solutions.

5.3. Flux-vector splitting. The flux-vector splitting developed by Sanders and

Prendergast (1974) and Steger and Warming (1981) is conceptually simple; however,

the resulting scheme smears a contact discontinuity and may become inaccurate at

sonic points [see also Hirsch (1990)]. On the other hand, Roe's flux-difference splitting

(1981, 1986) is conceptually more involved, but it is highly accurate. The models for

these two splittings are very different: for the former, the interaction between the left

and right states is accomplished through mixing of pseudo-particles (the Boltzman

approach); for the latter, through finite-amplitude waves (the Riemann approach) [see

Harten, Lax, and Van Leer (1983)].

We present below a flux-vector splitting that turns out to be identical to Roe's flux-

difference splitting. The advantage of this presentation is its conceptual simplicity. The

method, in fact, is very similar to that of §5.1, but instead of splitting the primitive

variables, we split the fluxes. The two key techniques are, again, linearization and

diagonalization. What is crucial, however, is that the fixed state for the linearization

must be derived carefully in order that the solution depends continuously on the data.

Our derivation of this state, which is Roe's 'square root averaging' state, follows the

remark concerning M. Brio in Roe and Pyke (1984).
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As expressedin (2.10),after a hnearization, the Euler equation can bewritten as

ou _,oua--T+ _ = 0;

here -&-c = (0F/0U)(U), and O is yet to be determined. With the initial condition

(5.2), let O be a state that satisfies

_r = X0_u (5.15)

where A is defined in (5.3). (As will be shown later, the above condition implies the

upwind flux depends continuously on the data.) Loosely speaking, we wish to find a

solution for the mean value theorem (which says a solution exists in the scalar case).

Using expression (2.22) for -_c,

A(pu 2 +p) = (7-3)fi2/2 (3-3,)fi 7- 1 Apu .

a(_ + p)_ (__ 1)_3/2_ _ _(z_ 1)_2+ _ _ F,_ /
(5.16)

The first component of the above vector equation yields Apu = Apu, which is useless;

as a result, the solution of the above system cannot be unique. Next, using expression

(2.2b) for e, the second component can be simplified to

_2t,p_ 2_A(p_)+ _(p=2)= 0. (5.17)

The two solutions of the above quadratic in fi are

= a_(pu) ± [{A(pu)} _- Ap_(pu_)] _/_
Ap

For simplicity of notation, set

_L= ,/_, ,R = _, (5.18)

then, by expanding A via (5.3),

tt -: rLUL -4- rRUR (5.19)
rL -4= rR

The solution corresponding to the negative sign is meaningless when PL = PR, and is

therefore discarded. The one with the positive sign always makes sense and yields

: FLUL dr- rRttR (5.20)
rL d- rR
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The aboveexpressionis Roe'swell-known 'squareroot averaging'. For the purposeof

codingand for later use,denote

/3L = rL , _3n = rn , (5.21a, b)
rL + rR rL + rR

and

p. = x/'PLPn. (5.22)

Then

and

t3L -- PL , /3n = 1 --/3L, (5.23a, b)
PL "4- p.

= _LUL "4- I_RUR; (5.24)

that is, fi is a weighted average of U L and un.

Consider now the third component of (5.16). Since fi is already determined above,

this component yields the total enthalpy/7/. Indeed, by definition (2.17) for H,

e + p = pH, (5.25a)

and by (2.2b),

l_pH
,,,_1

= + :=--:pu2. (5.25b)
-y z-y

Using the above expressions, (5.17), and the lineaxity of A, the third component can

be simplified to

A(puH) = -_HZXp + HZX(pu) + _ZX(pH).

As a consequence,

[1 = A(puH) - £tA(pn) (5.26)

By expanding A in the above expression and factoring out rLrn(un -- UL),

[1 = rLHL + rnHn (5.27)
rL + rR

that is, with BL and _n by (5.23a,b),

[t =/3LHL + _nHn (5.28)

(note the similarity between (5.28) and (5.24)).
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The argument (5.16-28) yields the following important fact: equation (5.15) is

satisfiedwith _ by (5.24), .f-/asabove,and _ arbitrary.

Next, we split the fluxes. As noticed after (2.20),wedo not need_ for the purpose

of diagonalization becauseit doesnot appear in the expressionsof -_c,/kc, l_c, and R_.

Multiplying (2.1) on the left by I_, and since L_ is a constant matrix,

oi,cu OLoF
c9""_ ÷ Ox - O. (5.29a)

Let the characteristic variable be W = L_U (for convenience, we omit the subscript c

in W), and the characteristic flux, G = L_F. Then, the above is equivalent to

0W OG

0---7- + cOx O. (5.29b)

Corresponding to the initial condition (5.2),

WL = L_UL, Wa = 1LcUa, (5.30)

and more importantly,

GL : LcFL, GR = LcFR.

Since i_c is a constant matrix, (5.30) and (5.31) respectively imply

AW = L_AU, AG = LEAF. (5.32a, b)

We now make use of the crucial expression (5.15): AF = ACAU. Substitute this into

(5.32b),

AG =

By (2.15) and (5.32a),

(5.31)

= haw. (5.32c)

Let g(0 be the ith component of G, then the upwind characteristic flux Gu at x = 0

for (5.29b) is determined by the sign of _(0:

gL if _ _> 0, (5.33)gu [ gn otherwise

where, once again, the superscript (i) is omitted. Expression (5.32c) shows that if

= 0, then gL = gR, and it does not matter whether the left or the right flux is

selected in (5.33). Finally, the upwind flux is

F_ = I_¢Gv. (5.34)
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In summary, let p, be defined by (5.22); /3L, J3R by (5.23); fi, (5.24); /-/, (5.28); Lc,

(2.18); and Re, (2.16). Then the upwind flux is given by (5.31), (5.33), and (5.34).

Similar to the derivation of (5.7), the above algorithm can be expressed with no

conditional statement. Indeed, by considering the two cases of (5.33),

gv = _ -_ (5.35)

As a result, switching to vector notation,

Gu = ½(GL + GR) --½sgn (A)(Gn - GL).

Denote by I/k[ the diagonal matrix whose diagonal entries axe IA(i)[. Then from (5.32c),

and since [sgn (/k)]/k = I/k[,

_ I/kl.W. (5.36)Gu = }(GL+ GR)--

By (5.32a),

Gu = _(GL + 11AILcAU. (5.37)

Multiplying the above expression on the left by 15-_ and employing definition (5.31),

one obtains

1 FR ) I ~Fu = _(FL+ - _RcI_-IL_Au. (5.38)

Thus, in the flux-vector spfitting algorithm summarized after (5.34), expressions (5.31),

(5.33),and (5.34)can be replacedby (5.38).Expression(5.38)isverysimilaxto Roe's
flux-_fference splitting formula; in fact, in the next subsection, we will show that they

are identical.

Note that in (5.31) and (5.33), we split the left and right fluxes to obtain the upwind

flux; in (5.38), however, it is AU, the difference of the conserwtive wriables, that is

split. As shown above, the two spfittings are identical provided (5.15) is satisfied. If a

different state is chosen for the lineaxization, e.g., the average state lJ defined in (5.5),

the splitting (5.33) no longer yields a result identical to (5.38).

With the tilde state given by (5.15), expression (5.33) yields a flux that depends

continuously on the data. If a different state is chosen for the fineaxization, the flux via

(5.33) may not depend continuously on the data any longer. In contrast, expression

(5.38) always results in a flux that depends continuously on the data no matter which
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state wepick for the hnearization. For this reason, (5.38) is preferred. Conceptually,

however,(5.33) is simpler.

Also note the similarity betweenthe primitive-variable splitting (5.7) and the flux

splitting (5.38). What is crucial, however,is the differencesbetweenthe two: to the

advantageof the flux splitting, the sign function in (5.7), which is discontinuous,is

replaced by the absolutevalue function in (5.38), which is continuous; to its disad-

vantage,the matricesin (5.7) associatedwith the primitive variablesare sparse,while

thosein (5.38) associatedwith the fluxesare not.

Observethat the key differencebetweenthe flux-vector sphtting of (5.33) and that

of Stegerand Warming is that in the latter, the left flux is split by the matrix Lc,Lat

the left state, and similarly, the right flux, by the matrix at the right state; whereas

in the current method, both the left and right fluxes are spht simultaneouslyby the

matrix Lc at the tilde state.

5.4. Flux-difference splitting. In this subsection,we show that the above

method yields a result identical to Roe's flux-differencesplitting. To prove this, we

first calculate_ by employingthe Jacobianof the transformation betweenthe primitive

and conservativevariables. In addition to (5.15),werequire that the tilde state satisfies

Au =MAy,

or, with 1VI expressed by (2.11b),

Apu = _ - 0 Au .

t,e / _2/2 _ 1)ll(,r - _p

(5.39)

(5.40)

Notice that due to the use of 1VI, our derivation of the tilde state is conceptually simpler

than that of Roe and Pyke (1984), where the eigenvectors axe employed to decompose

AF and AU.

The first component of the above vector equation yields Ap = Ap, which is again

useless. The second and third yield, respectively,

A(pu) = _Ap + kAu,

A(pu :) = fi2Ap + 2fi_Au.

(5.41)

(5.42)
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Note that these two equationsare identical to (3.9-10) of Roe and Pyke (1984). Cal-

culating/_ from (5.41) and substituting it into (5.42), one obtains

_2Ap- 2_A(pu)+ A(pu2)= 0.

Strikingly, this quadratic is identical to (5.17), and the solution for _ is given in (5.20).

Substitute _ into (5.41), one obtains

= ,/p_p_. (5.43)

The argument (5.40-43) yields the following important fact: equation (5.39) is

satisfied with _ as above, fi by (5.24), and lft arbitrary.

As a result of the statement above and that after (5.28), the following crucial

conclusion can be drawn. There exists a state _" which satisfies the two equations

AF = kjkU and AU = I_'IAV (5.44a, b)

simultaneously, and this state is unique: it is defined by (5.43), (5.24), and (5.28).

We make use of (5.445) to simplify (5.38). Multiplying (5.44b) on the left by 1_

and employing (5.32a) and (2.145),

AW = L_AU = LpAV. (5.45)

Substituting this into (5.38), we obtain

Fu = _(FL d- -- _ao IhlL_Av. (5.46)

The above is identical to expression (28) of Roe 1986), which is the flux-difference

splitting formula. To clarify the differences in notation, note that the components of

LpAV are denoted by ak by Roe; and the columns of Re, by ek. Since the flux-vector

and flux-difference splittings yield identical results, when a distinction between them

is not necessary, they are called the flux-splitting method.

Observe that the advantage of the flux-difference splitting (5.46) over the flux split-

ting (5.38) is that the matrix Lp is sparse while Lc is not.

Also note the similarity between the flux-difference splitting and the primitive-

vaxiable splitting (5.7). For comparison, suppose we replace the tilde state in (5.46)
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by the averagestate (5.5). Then, compared to the primitive-variable splitting, the

flux-differencesplitting has the disadvantageof costingslightly moresinceI_ is sparse

while tkc is not; on the other hand, its advantageis that the resulting flux depends

continuouslyon the data, and consequently,it is more robust.

We remark that with the tilde state definedby (5.24), (5.28), and (5.43), one can

derive/3:

BRpL+  LPR +  L R (Au)

From the definition of the tilde state, it is not obvious that/3 is strictly positive. But

from the above expression, and since t3 by (5.43), BL, and _a by (5.23) are all strictly

positive, so is/3.

As discussed by Roe (1981, 1986, 1989), the flux-splitting method may admit non-

physical solutions. This problem can be corrected by an admissibility condition (Roe

and Pyke 1984) or by adding numerical diffusion (Harten 1983, Harten and Hyman

1985). One can also derive an upwind flux that satisfies the entropy condition a

priori (Engquist and Osher 1981, Osher and Solomon 1982, Osher 1984, Osher and

Chakravarty 1984). For a recent treatment, see Roe (1992). Two types of admissibil-

ity conditions that are somewhat different from the one in Roe and Pyke (1984) are

shown below. Our presentation also establishes a connection among these different

approaches: they all add numerical diffusion by increasing the magnitude of the wave

speeds.

5.5. Admissibility conditions for flux-vector splitting. In this subsection,

we present a conceptually simple admissibility condition that excludes non-physical

solutions. Due to its simplicity, it may easily extend to other systems of equations.

Again, the superscript (i) is understood. Suppose )_L and AR (yet to be determined)

are respectively the speeds associated with the characteristic quantities {WL,gL) and

{wR,gR} defined in (5.30-31). Then, for the flux-vector splitting, we have effectively

assumed that '_L _- )_R : i. In other words, the ith component of equation (5.29b) is

a convection equation with speed _. Since (5.29b) is nonlinear, if we can approximate

)_L and An more accurately, in addition to the case of a convection, we can have either

that of a shock where )_L > '_ > )_R, or a, fan where )_L < i < /k R.

In the case of a shock (see Fig. 5.2(a)), expression (5.33) is still appropriate for
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Figure 5.2. Characteristic fluxes for a shock and a fan.

the following reasons. The upper half of the (x, t)-plane is divided into two regions by

the shock line x = At, and the characteristic flux is a constant for each region, taking

the value gL to the left of the shock, and the value gR to the right. Expression (5.33)

determines which of these two values is chosen for gu, the characteristic flux at x = 0

(x = At, )_ = 0, and t _> 0).

In the case of a fan (see Fig. 5.2(b)), however, (5.33) may no longer be appropriate

for the following reasons. The upper half of the (x, t)-plane is divided into three regions

in this case: to the left of x = _Lt, the flux is gL; to the right of x = )_at, it is gR; and

for the region consisting of the rays x = At where '_L --_ )_ _<_ _R, the flux g(A) changes

smoothly from gL to ga. If the fan does not spread past x = 0 (or)_ = 0), then clearly,

(5.33) is still valid. But if the fan spreads past x = 0, (5.33) still yields either gL or ga,

which is a poor approximation for gu and may result in non-physical solutions. This

situation is depicted further in Fig. 5.3, where the characteristic flux g as a function of

the characteristic variable w is plotted.

We estimate )_L and _a by using the tilde state as a pivot, and approximate the

fan by a (piecewise) linear function below. First, denote the vector of characteristic

variables and fluxes at the tilde state by V¢ and (_:

= = = = (5.47)

By carrying out the multiplications in the brackets using (2.11c) and then the multi-
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Figure 5.3. A fan spreading past A = 0 in (w,g)-space.

plication by l_p using (2.6c), the above expressions yield

((-#

= [ i/2 _ _(-_- i) .(_+_)/2
(5.48a, b)

(We remark that GL and GR defined in (5.31) can be simplified in a similar manner.)

Note that (_ can also be derived by observing that the flux F, as a function of the

conservative variable U, is homogenous of degree one: F = AclJ; as a result, (_ =/_r.

In addition, notice that each component _ of the vector (_ has units of momentum,

while each component ff_ of Vq has units of density and is strictly positive. Next, let

the average speeds be

_L -- gL -- g _R = gn - [7 (5.49a, b)
WL -- (v' wn -- w"

We can now estimate A L and An:

AL = 2AL -- A, An = 2Xa - A. (5.50a, b)

If A > 0 and AL < 0, then we have a fan that spreads past x = 0. By assuming that the

flux g is a hnear function of the speed A between (AL, gL) and (A, _), we can estimate
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gu, the flux corresponding to the speed O:

gu -- gL g -- gL

--AL A -- A L"

Thus, for this case, we reset gu defined in (5.33) by

_gL -- AL9

-- AL
gu

Similarly, if A < 0 and An > 0, then

(5.51a)

-3,gR + AR9 (5.51b)
gu ''- --_ + AR

By considering the limiting case of AL --_ 0 and that of An _ 0, one can easily verify

that gu defined by (5.33) and (5.51a,b) depends continuously on the data.

Notice that we need to carry out the above admissibility correction only for the

nonlinear characteristics; for the linear one, (5.33) is sufficient (more on this in the

next subsection). In fact, if _ > 0, then the first component g(_) requires this cor-

rection, but not the third since the left and right speeds corresponding to a nonlinear

characteristic do not spread beyond the contact speed _ (approximately anyway; for

the exact solution, this is always the case). Similarly if _ < 0, then the correction is

carried out only for g(_).

Also note that in general, AL and An given by (5.50) may lie on the same side

relative to A. However, if the left and right states differ only by either the first or the

third characteristic, then, for all practical situations, AL and An lie on different sides

relative to A; i.e., we have either a shock or a fan.

5.6. Admissibility conditions for flux-difference splitting. Since the role

of the admissibility condition is to break up the solution when it is not physical, a

simple model may serve the purpose. In this subsection, we make use of the simple

wave model employed by Roe and Pyke (1984) to approximate AL and An, and then,

derive an admissibility condition for the flux-difference splitting that involves no con-

ditional statement. Moreover, formula (5.67) below shows that this condition produces

additional 'numerical viscosity' when the fa_ spreads past x = 0, and thus, (5.67)

provides an explanation for the connection between the approach of admissibility con-

dition (Roe and Pyke 1984) and that of numerical diffusion (Harten 1983, Harten and

Hyman 1985).

43



Let V = (p, u,p) T be a fixed state, which plays the role of V in (2.9). Let V+6V =

(p+6p, u+6u, p+6p)T be a nearby state. For each ith component, we will estimate 5A (0,

the change in the chaxacteristic speed, in terms of 6w(O, the change in the characteristic

variable. By ]_inearizing the Euler equations at V, (2.9) implies

-[p/(2c)]6u + [1/(2c2)16p_6w = Lp_V= 6p- [1/c216p ]. (5.52)
[p/(2c)]6_+ [1/(2c2)]6p /

(See also expression (5.45).)

Next, we assume that the two states differ from each other only by the first char-

acteristic; that is,

6w(2)= _p_ [1/c_]_p= o, (5.53a)

and

6w(_)= [p/(2c)]6_ + [1/(2c2)]6p= o. (5.53b)

All 6 quantities are expressed in terms of 6p below. Equations (5.53a,b) are equivalent

to

6p= c_6p, 6u = -(c/p)6p. (5.54a,b)

As a consequence of (5.52) and (5.54),

6w (1)= 6p. (5.55)

Now, we calculate 6c. By definition (2.4) for the speed of sound,

pSp - p6p
2c6c = "7 p2

Using (5.54a) and again (2.4), the above implies

6c- ("7 - 1)c6p (5.56)
2p

The speed corresponding to the first characteristic of V is )_(1) = u - c; that of V + 6¥

is )_(_) + 6)_0) = u + 6u - (c + 6c). Consequently, by (5.54b) and (5.56),

6_ (I) =6u-6c= ("7 +l)c6p
2p
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And by (5.55),
_(1) = (_ + 1)c_w(1) (5.57)

2p

A similar argument for the third characteristic with the assumption that (_w(1) = 0

and 6w (2) = 0 yields

_(3) = (_ + 1)c_(3) (5.58)
2p

For the second characteristic, 5w (1) = 0 and 5w (3) = 0 imply that 5u = 5p = 0. As

a result, (_)_(2) = 6u = 0. For this reason, the second component needs no modification.

We are now ready for the admissibility correction. With the initial condition VL

and VR, let the tilde state be defined by (5.43), (5.24), and (5.28). Let AW = I_pAV,

and for the purpose of derivation, let Gu be defined by (5.36).

We carry out the argument for the first and third characteristics below. Again, the

superscript (i) is omitted unless the corresponding expressions for the two characteris-

tics are different. Equation (5.36) implies

1gu = _ (gL -t-gR) -- ½1XI/Xw- (5.59)

For the purpose of estimating _L and )_n, we assume that _ = (WL + wn)/2; therefore,

WR-- (g = (o--eL -= 2 Aw.

Next, we employ either estimate (5.57) or (5.58): with V playing the role of the fixed

state V; VL and VR, that of V -4- 6V; in the case of the first characteristic, set

_ = _(1) = (_ + 1)_w(1) (5.60a)
2_

or if it is the third one that we are dealing with, set

A_ = A_ TM = ('y + 1)SAw(3) (5.60b)
2_

Then

),L = _ -- _A$,I )_R = _ + ½A$. (5.61a, b)

Note that if A£ < 0, then "_L > )t > )tR, the characteristic speeds converge, and we

have a shock. On the other hand, if A$ > 0, then )_L < _ < )_R, the characteristic
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speedsdiverge, and we have a fan. Furthermore, for the first characteristic, AA and

Aw have opposite sign by (5.60a); for the third, the same sign by (5.60b).

Denote the speed 0 by A0 and the corresponding characteristic variable and flux by

w0 and go, respectively. (Thus go = gu.) Suppose now we are in the situation of a fan

that spreads past x = 0; i.e., AL < 0 < An. In addition, suppose _ > 0. It follows from

(5.33) that expression (5.59) yields gL. Since the correct choice for gv is go, we should

add the quantity go - gL to the right hand side of (5.59).

To keep the formulas simple, we estimate go - gL in terms of Aw and the various

speeds below. The following estimates are independent of the assumption of a fan

As assumed in (5.60a-61), the speed A is a linear function of w;described above.

therefore,
W 0 -- W L AO -- A L --I L

Aw AA AA "

Moreover, WL corresponds to the speed AL, and Wo to 0; consequently, the average

speed between Wo and WL can be approximated by AL/2:

go -- gL AL

w 0 -- w L 2

As a result of the above two expressions,

)k 2
go -- gL _ ---A--_, A w.

Z/___A
(5.62a)

A similar argument yields
)k 2

go - gn ,,_ --_', Aw.
Z/.-_ A

Now, we turn to the situation of a fan that spreads past x = 0.

subcases: for _ > 0, set

77= AA;

for _ < 0, set

(5.62b)

There are two

(5.63a)

_ (5.63b)
77= A_"

The corrected upwind flux is given by adding go -gL to the right hand side of (5.59)

in the former case, and by adding go - gn in the latter. As a result, by (5.62-63),

9v  (gL+gR)--I -= (5.64)
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Next, we derive a formula for 77that works for all cases. Instead of )kL and An,

consider the quantity

In the case of a shock, i.e., AA < 0, the above expression is positive. For a fan that

does not spread past x = 0, it is also positive. For a fan that spreads past x = 0, it

is negative; it equals AL if A k 0; but --AR if A _< 0. Only when the fan spreads past

x = 0, does the flux need a correction. Thus, with

,_N -- {IXI- _AA}-, (5.65)

where z- is the negative part of z defined in (5.12), set

A_¢ (5.66)
= l/x11 + 10-iS;

then the corrected flux is given by (5.64).

Let H be the diagonal matrix whose diagonal entries axe 7/(1), 0, and 7/(3). By

multiplying the matrix expression corresponding to (5.64) on the left by Re, one obtains

Fu -- (FL+ FR)- 5Rcl-(Ihl + H) AW. (5.67)

Before summarizing the algorithm, note that the quantities "7-1, 1/('7-1), "7/('7-1),

and ('7 - 1)/7 are often used and should be stored.

Algorithm for flux-difference splitting with admissibility correction. At a

'nonsmooth' interface, i.e., kj+l/2 < 2 where ki+_12 is defined by (5.4), with VL agld

VR given by (5.1), calculate: eL and eR via (2.2b); HL and HR, (2.1 7); _, (5.43); t3L

and _3R, (5.23); fi, (5.24);/f, (5.28); g?, _, (2.17); AV, (5.3). With Lp by (2.6c), obtain

AW = [,pAV. Next, for i = 1 and i = 3, calculate _(0 via (2.5); AA (_), (5.60a); AA (3),

(5.60b);)_(_), (5.65); r/(i), (5.66). Finally, with Rc by (2.16), FL and FR, (2.2c), the

upwind flux is given by (5.67).

Observe that expression (5.66) can be replaced by a simpler one via an additional

approximation as shown below. Rewriting (5.66) as 77 = [AN[([ANI/[AA[), then by

(5.65), the quantity in the parenthesis is bounded between 0 and 1/2. We can replace

this quantity by its upper bound 1/2:

7t = ½]AN[. (5.68a)
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The aboveexpressionalwaysyields a more diffusive flux than (5.66). Insteadof the

factor 1/2, wecan use1/4, which is the averageof 0 and 1/2,

11,,_NI (5.685)r/=_

For the test problems below, the results by these two expressions are essentially iden-

tical to those by (5.66); nevertheless, only (5.66) is employed here.

5.7. Simple-wave upwind flux. We can now derive an economical approximation

to Osher's approximate Riemann solver (Engquist and Osher 1981, Osher and Solomon

1982). First, in our context, instead of (5.59), this flux is expressed as

1 1_[_,R
gu = -_ (gL + gn) - 2 Jwz I)q dw. (5.69)

Note the key difference between Osher's method and the above expression: for Osher's

flux, the integral follows a certain path in the space of state variables, and determining

this path is quite involved; here, the path is already determined by the linearization

and diagonalization. Observe that symbolically,

/ J2"dg _ ,k, )_ dw g, )_ dw gn gn.
dw

As a consequence, if/_L _-- 0 and ,kn > 0, then since A is assumed to be linear in w,

_(w) > 0 for all w between WL and wn, and expression (5.69) recovers gL; similarly, if

"_L _<_ 0 and )kR ___ 0, it recovers gn. For a fan that spreads past x -- 0, it yields

gU = -_ (gL + gn) + -_ L 5 )_dw = go. (5.70)

For these three cases, the result by (5.69) is the same as that by the flux-difference

spfitting with admissibility condition in the previous subsection.

However, if we have a shock with left and right speeds spreading past x = 0, i.e.,

_L > 0 and An < 0, (5.71)

then (5.69) yields

l ,k dw = gL '1- gR -- go. (5.72)
)_ dw + -_ o
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Next, in addition to (5.71),weassumethat _ >_0. Since(5.59)yieldsgL, we must add

to its right hand side the quantity gR - 90 to obtain (5.69). But this quantity is given

by (5.62b), and since AA < 0,

gR - go _ 2_-_Ai Aw- (5.73)

Thus, with

A_ (5.74a)

the upwind flux resulting from (5.69) is given by (5.64). The case A < 0 is similar

except A_, (5.74b)

An expression that works for all cases can be derived by assuming that we always

have a fan in (5.65): A)_/2 is replaced by its absolute value,

A N _-- {]i]- _IA,_[} -. (5.75)

Clearly, for a fan, the above expression reduces to (5.65) since AA _> 0. For a shock

that does not spread past x = 0, it yields 0. For a shock spreading past x = 0, there

are two subcases: if A >_ 0, it yields AR; if A < 0, it yields --AL.

Thus, with Ax defined by (5.75) instead of (5.65), the algorithm for the flux-

difference splitting with admissibifity correction in the previous subsection yields an

approximation to Osher's approximate Riemann solver. This method is named the

simple-wave upwind flux.

Observe that the argument (5.72-74) can also be carried out by switching the limits

of integration in (5.72) so that the variable A corresponding to a shock is transformed

into that of a fan.

Note that the flux-difference splitting turns a fan into a shock, whereas the algo-

rithm in this subsection does the exact opposite by turning a shock into a fan. Also

notice that to save computing time, one can replace the tilde state by the average state

(5.5).

6. Flow with area variation. The formulation presented in the previous sections

extends easily to the case of flows with source terms. As an example, consider the
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unsteadyone-dimensionalflow in a duct of variablecross-sectionalarea A(x), which is

described by

(AU), + (AF), = B, (6.1a)

where U and F are defined in (2.1), and the source term is

B = (O, pdA/dx, O)T. (6.1b)

This problem has been studied by several authors; see for example Roe (1986) and the

references given there. In the same paper, Roe presented a modified Riemann solver

that takes into account the area variation. Using Hancock's half-step formulation pre-

sented in section 3, the area variation is accounted for simply in the partial differential

equations for the primitive variables derived from (6.1). First, (6.1) implies

A_

Ut + F_ + --_-C = O, (6.2a)

where

c = r - (0,p,0)r = (pu,pu2,(_+ p)_)r.

Next, with V and Ap defined by (2.3), the above leads to

As

Vt + ApV_ + --_-K = 0,

where

(6.2b)

(6.3a)

K = (pu, O, 7pu) T. (6.3b)

The first component of (6.3a) follows easily from that of (6.2a); a similar statement

holds for the second component, which employs the first; and the derivation of the

third component employs both the first and the second.

For each jth cell, the calculation of Sj, which approximates (V_)j, is the same

as that of section 4; however, the quantity Tj, which approximates (Vt)j and was

estimated by (3.5), is now obtained by using (6.3):

(As) Kj. (6.4)Tj = -(Ap)_ s_ - -_- J

This is where the source term plays its role. The rest of the calculations are the same

as those for the Euler equations (2.1): the solution at time t n+1/2 is given by (3.6),
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and the flux at eachinterface is obtained by one of the methods in §5 without any

modification because time is frozen at t n+1/2, and the source term contributes nothing

here. Finally, using the midpoint rule in a manner similar to the derivation of (3.3b),

expression (6.1) implies

n 7" fA Fnq-1/2 A _nq-1/2
AjU'] +_ AjUj JI- -_t_.,'ij_l/2 j-l�2 -- "tlJ+l/21: i+l[2 + Z_ +1/2)' (6.5a)

where

Z_ +1/2 [0 _+1/2r A ,0)T,• = t, ,Pi t j+l/_- Aj_I/_] (6.5b)

1Tp_+l/2 = PJ q_ 5 (Pt)j, (6.5C)

and (pt)j is given by the third component of (6.4). The above expression completes

the algorithm for the interior points. Note that in the steady state case, one can set

p,_+1/2 = PJ"

Our boundary conditions are the standard ones. At the inflow boundary, if the flow

is supersonic, we specify all three variables p, u, and p; if it is subsonic, we specify two

and extrapolate the third from the interior. For the outflow boundary, if the flow is

supersonic, we extrapolate all three variables; if it is subsonic, we extrapolate two and

specify one, say, pressure. For simplicity, and since the flow fields in our numerical

examples are essentially constant near the boundary, we employ a piecewise constant

reconstruction for the boundary cells. For the cell right next to the boundary ones,

the slope is estimated by the parabolic (three-point) formula. One can also employ

appropriate one-sided interpolations; the results are essentially the same.

7. Numerical experiments. Unless otherwise stated, in all of our numerical ex-

amples, V = 1.4; the slope steepening coefficient _ is set equal to 5; at a 'smooth' inter-

face where kj+l/2 = 2, the one-intermediate-state model is used; otherwise (kj+l/2 < 2),

the flux-difference splitting with admissibility condition is employed; and finally, the

CFL number is 0.8. Note that at a 'smooth' interface, the computing effort is only

slightly more than that of the central difference scheme with artificial viscosity (5.13b)

[see also Jameson, Schmidt, and Wurkel (1981), and Harabetian and Pego (1993)]. Gen-

erally, most of the interfaces are 'smooth'. Near a discontinuity, i.e., at a 'nonsmooth'

interface, the computing effort is slightly more than that of the UNO scheme. Also

note that for convenience, the one-intermediate-state model is said to be employed
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everywhereif at a 'nonsmooth' interface (kj+l/2 < 2), this model with the modification

(5.14) is used.

For shocktubeproblems, the initial time stepscorrespondingto a fixed CFL condi-

tion areoften too big becausethe flow hasnot developed;e.g., for the Riemann problem

used by Sod (1978), with CFL number 0.8, the first three time steps are 0.0068, 0.0040,

and 0.0039, while the final time step is 0.0036. Because the solution is self-similar, all

time steps are equal to 0.0036 in the exact solution. The initial time steps that are too

big can occasionally cause some oscillations, especially for CFL number 0.9 and above.

To avoid this problem, one can make a test run to find the appropriate time step, and

then fix the time step rather than the CFL condition. This modification, however, is

not appropriate in the case of Woodward and Colella's blast wave problem, where the

time steps vary as time goes by. The following simple modification works well for all

test problems below: let the kth time step corresponding to a fixed CFL condition be

denoted by At; for the first 9 time steps, (1 < k < 9), we reset At by

Generally, to arrive at the same final time, a test case with the above modification

takes three time steps more than one without. For the example mentioned above, the

first three time steps are 0.00!3, 0.0020, and 0.0023. Expression (7.1) is employed in

all of the following problems.

The first test, used by Sod (1978), is the Riemann problem (5.2) with the initial

data

(pL, UL,PL) -- (1,0, 1), (pR, un, pn) = (0.125,0,0.1) (7.2)

where the subscript L represents the initial condition for 0 _< x < 0.5, and R, for

0.5 < x < 1. Figure 7.1 shows the results with 100 cells, h = 0.01, xj = (j - 1/2)h. The

final time is t = 0.2 (after 57 time steps). The solid Line represents the exact solution;

the dots, the numerical one. Note that we do not need any boundary conditions because

the final time is chosen so that the waves have not arrived at the boundaries. At the

end of the calculation, there are a total of fourteen 'nonsmooth' cells: eight around

the contact discontinuity, and six around the shock; the two discontinuities at the two

ends of the expansion fan are in the 'smooth' region because the changes in density are
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within the noise level by this time. The internal energy (per unit mass) e/p - u2/2,

which magnifies any error for this problem, is shown in Fig. 7.1(d).

In the next two figures, the results for the density, velocity, and pressure are omitted

since they are practically identical to those of Fig. 7.1. Figure 7.2 shows the internal

energy of the same problem excei_t for: (a) CFL number 0.9 (51 time steps), (b) CFL

number 0.01 (4329 time steps), (c) ,c = 0 (57 time steps), and (d) _ = 10 (also 57 time

steps). As shown by Fig 7.2(a), in spite of the rather large CFL number, the solution

is highly accurate thanks to the modification of the first ten time steps via expression

(7.1). In Fig. 7.2(b), after a large number of time steps, the contact discontinuity still

remains sharp due to the slope-steepening technique. Figure 7.2(c) shows that for Sod's

problem, with CFL number 0.8, the fmal time is not large enough to smear the contact

discontinuity because even without slope steepening (_ = 0), the solution is adequate.

Comparing Fig. 7.2(d) to Fig. 7.1(d) we notice that once the contact discontinuity is

resolved, increasing _; does not yield a significant improvement.

Figure 7.3 shows again the internal energy for the same problem except now we test

the upwind fluxes: (a) central difference with artificial viscosity (5.13b) at 'smooth' re-

g-ions, (b) one-intermediate-state (HLV) model everywhere, (c) primitive-variable split-

ting (5.6) at 'smooth' regions, and (d) simple-wave upwind flux (5.75) everywhere. As

shown in Fig. 7.3(a), the result by the central difference (5.13b) is as good as that

via a more sophisticated model. However, for the Lax problem below, the solution by

this model cannot match that via an upwind one. Figure 7.3(b) shows that the mod-

ification (5.14) for the one-intermediate-state model is capable of resolving a contact

discontinuity. Comparing Fig. 7.1(d) to Fig. 7.3(c), we notice that the solution via the

primitive-variable splitting (at 'smooth' regions) is essentially identical to that via the

one-intermediate-state model. Similarly, Figs. 7.1(d) and 7.3(d) show that at 'smooth'

regions, a more sophisticated (simple-wave) model does not improve the result; in addi-

tion, for a moving shock, the simple-wave model produces a result essentially identical

to that via the shock model (flux-difference splitting).

The next test, used by Lax (1954), is the Riemann problem

(pL, UL, PL) = (0.445,0.698,3.528), (pn, un,Pn) = (0.5,0,0.571) (7.3)

with the final time 0.16 (after 97 time steps). This problem is more difficult than that
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of Sodbecausethe density field has to be 'built-up'. The resultsare shownin Fig. 7.4.

Figure 7.5 showsthe density and velocity fields of the sameproblem exceptagain

(as in Fig. 7.3) we test the upwind fluxes: (a) 'central difference'(5.135) at 'smooth'

regions,and here note the bump at the tail of the expansionfan in the velocity field;

(b) one-intermediate-modeleverywhere,and for this model, the bump is considerably

smaller; (c) primitive-variable splitting at 'smooth' regions;and (d) simple-waveup-

wind flux everywhere.

The abovetwo (and also the following) problemsshowthat at 'smooth' interfaces,

the one-intermediate-statemodel is as accurate as a more sophisticatedmodel. It is

alsovery economical.The flux-differencesplitting with admissibility correction (or the

simple-waveupwind flux) is neededonly near a discontinuity.

The third problem is designedto test the admissibility condition. It is the Riemann

problemcorrespondingto a steadyMach 3 shock,except the left and right states are

reversed:

(pL,UL,PL) = (3.857,0.920, 10.333), (pR, UR,PR) = (1,3.550, 1). (7.4)

The solution for the final time t = 0.09 (after 59 time steps) is shown in Fig. 7.6.

Note that for this problem, the shock for the numerical solution is about two mesh

points behind that of the exact one. To explain this phenomenon, we plot the solutions

in Fig. 7.7 for the density field at time t -- 0.003 (after 4 time steps, and the expansion

fan is well captured even here), t = 0.01 (9 time steps), t = 0.03 (23 time steps), and

t = 0.04 (27 time steps). Because the numerical solution resolves the fan first, and

then the contact discontinuity, by the time the shock is formed, it is already two cells

behind.

Also notice that if the flux-difference splitting without any correction is employed,

then theoretically, the solution does not chaaage with time because the fluxes are bal-

anced. Eventually however, the solution is broken up by numerical error, but is no

longer time-accurate. Next, a remark concerning the various admissibility conditions is

in order. The correction for the flux-vector splitting in §5.5, that for the flux-difference

splitting in §5.6, and the simple-wave upwind flux in §5.7 all produce essentially iden-

tical results for this test.

The fourth problem, due to Shu and Osher (1989), has several extrema in the
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smooth regions. It is used here to test the accuracyof the schemes. In the interval

-5 _<x __ 5, a moving Mach 3 shock interacts with sine waves in density as described

by the following initial conditions:

(3.857,2.629,10.333) if x < -4, (7.5)(p, u, p) = (1 + 0.2 sin 5x, 0, 1) otherwise.

The final time is t = 1.8. Since the exact solution for this problem is unknown, the solid

line is the solution with 1600 ceils and n -- 0. Figure 7.8 shows the solutions with 400

and 800 cells, respectively (_; = 5). Note that the solution for 800 cells has essentially

converged (in the sense of mesh refinement). The solutions compare favorably with

those of the third-order ENO scheme (Shu and Osher 1989).

Our fifth test is the problem of two interacting blast waves (Woodward and Colella

1984). The initial condition for 0 < x < 1 is

VL ifx < 0.1,
V= VM if 0.1<x<0.9, (7.6)

Vn if 0.9_<x,

where

PL _- PM : PR = 1, UL : UM -_- UR : 0, PL = 103, PM : 10-2, PR -_- 102- (7.7)

The boundaries at x = 0 (corresponding to the index 1/2) and x = 1 (index N + 1/2

where N is the total number of cells) are solid walls with the following reflecting

boundary conditions: at time level n (the superscript n is omitted below), we define

auxiliary states V0, V-l, V-2 for the left boundary, azld Vw+I, VN+2, VN+3 for the

right one by

P-l+1 = Pl, u-l+1 = -ul, P-t+1 = Pl, l = 1, 2, 3, (7.8a)

PN+I = PN-I+I, UN+l = --UN-I+I, PN+l = PN-I+I, l = 1, 2, 3. (7.8b)

At the final time t = 0.038, the flow field has three contact discontinuities. The middle

one, which is created by the two shocks interacting with each other, is very difficult to

resolve. Even very compressive schemes such as Roe's 'Superbee' smear it (Roe and

Pyke 1984).

Notice that due to the small pressure in the middle region, the reconstruction step

may result in negative values for pressure and density. This problem is solved simply
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by replacingp by max(10-5,p) (similarly for p) each time a new p or p is calculated

(for 'nonsmooth' ceils and interfaces).

Figure 7.9 shows the solution with 1200 cells, _ = 12, after 2411 time steps. In

Figs. 7.9-10, this solution is represented by the continuous line since the exact solution

is unknown. At the end of the calculation, there are nine 'nonsmooth' ceils around

each of the three contact discontinuities, and seven or eight around each of the two

shocks. Note that again the solution compares favorably with those of higher-order

schemes (Woodward and Colella 1984, Harten, Enquist, Osher, and Chakravarty 1987,

Harten 1989). We also tested several values of _; between 10 and 99; the results are

practically identical for this problem.

Concerning computing time, on an Iris Indigo R4000 workstation (16 Mflops, com-

plied with option -09.), this case takes 32 seconds. At 'smooth' regions, if the central

difference with artificial viscosity (5.13b) is employed, there is roughly a 6 percent

savings; if Roe's flux-difference splitting (with no admissibility correction) is used, the

cost is about 35 percent more. The three results are practically identical.

Figure 7.10 show the density field of the solution with (a) 600 cells and _ -- 16; (b)

400 cells and _; = 9.0; (c) 400 cells and _ = 7, where the middle contact discontinuity

is slightly smeared, but the other two still remain sharp; and (d) 400 ceils and _ = 5,

where the three contact discontinuities are smeared.

The last example is (essentially) the quasi one-dimensional nozzle flow problem

employed by Shubin, Stephen, and Glaz (1981): the domain is -2 _< x _< 10; the area,

A(x) = 1.398 + .347tanh(.8x-4); the supersonic inflow conditions are p = 1, u = 1.30,

p = 1; the subsonic outflow, p = 1.4. The initial conditions are identical to the inflow

conditions everywhere. Figure 7.11 shows the solution with 80 cells after 9.000 iterations

when machine accuracy is reached. Note that at the shock, the exact value for entropy

calculated from the exact averages of density, momentum, and energy is plotted with

the cross symbol. As a result, the entropy value at this pqint is meaningless. Also

notice that the entropy field for this problem is difficult to resolve accurately; see, e.g.,

Hirsch (1990).

Finally, we remark that for the case of a very slowly moving shock (Roberts 1990,

Lin 1991, Quirk 1993), similar to the solution by the exact Riemann solver, all upwind

fluxes presented here yield oscillatory results. We omit the details. As stated by Roe

65



7

E

_3 ....................................

I .............

0 i L i
0,4 0.6 0.8

X

0
0

1211 1
10

8

6

4

2

0
I I i l

0.4 0.6 0.8

X

450

L

400 ................. _ ................

350 ................. t
300 ................

250 .................

200 .................... , ..... ......

1

150 ............. : ..... : ....... : ......

100 .... : " _ '_

50 : ....

0 I L i i
0.4 0.6 0,8

1400

1200

1000

800 .........
>.

Q)

600 ..........

40O

200

0
0.4 0.6 0.8

×

Figure 7.9. Woodward and Colella's interacting-blast-wave problem.

66



7

2 ........... I _" ........

1 ti .............. ,,_--
6

lit,

0 J
0.4 0.6 0.8

(o) 600 cells, ic = 16

7

>4

(4

-o3

0
0.4

iI
; I I

0.6 0.8

(a) 400 cells, _ = 20

>`4

3

7

5 ....................... ,t .......

!

0 i I i
0.4 0.6 0.8

(o) 400 cells, _c = 7

4
>`

ct_
E

_3

..... _• 14:
._

5 .................

0
0.4

t
t

I 1 !

0.6 0.8

(o) 400 cells, _c = 5

Figure 7.10. Interacting-blast-wave problem with different mesh sizes and i¢ 's.

67



1.4

1.2

1.0

0.8
C

0.6

0.4

0.2

r

2-0I

1.8

1.6

1.4

u

o 1.2

1.0

0.8

0.6

I L I I 1 I I t I I

0 4 8 0 4 8

X X

1.4

1.2

1.0

_, 0.8
k

0.6

0.4

0.2

0.20

0.15

0.10

_ 0.05

0.00

-0.05 i
0 8 0

] r I I

4 4 8

X X

Figure 7.11. Quasi one-dimensional nozzle flow problem.

68



(1989), "The perfect Riemann solver for generating numerical schemes probably does

not yet exist."

8. Discussion and conclusions. The interpolation and constraints in this paper

can be extended to the piecewise-parabolic, dual-variable (scheme V in Van Leer 1977),

and dual-mesh methods (Nessyahu and Tadmor 1990, Sanders and Weiser 1992). The

author hopes to report on some of the results in forthcoming papers.

In summary, concerning the reconstruction step, a piecewise linear interpolation

that preserves monotonicity and uniform second-order accuracy was introduced. The

concept and coding of the monotonicity constraints were simplified by the use of the

median function. Computational efficiency was enhanced by devising a criterion that

detects the 'smooth' part of the data where the constraint is redundant. A slope-

steepening technique, which can generally resolve a contact discontinuity in four cells,

was presented. As for the upwind step, upwind fluxes were employed in a manner

slightly different from those in the literature. They were rederived from a simple and

unified point of view by approximating the Euler equations in conservation form using

linearization and diagonalization. At smooth regions, the one-intermediate-state model

was employed for economic reasons. (The central difference with artificial viscosity

(5.13b), which is even more economical, can also be used, but for the Riemann problem

of Lax, the result is not as accurate.) Near a discontinuity, either the flux-difference

splitting with admissibility condition or the simple-wave upwind flux was employed for

robustness. The resulting scheme is efficient and accurate.

For slow moving shocks, difficulties remain. Extensions to the multi-dimensional

case, which may involve more theoretical work on constraints as well as upwind fluxes,

are to be explored.
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applied in a manner slightly different f_om those in the literature. These methods are derived by approximating the Euler equations
via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one-intermediate-state model is employed.
A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or
a more accurate one, namely, Roe's flux-difference splitting, is used. The current presentation of Roe's method, via the conceptually
simple flux-vector splitting, not only establishes a connection between the two splitdngs, but also leads to an admissibility correction
with no conditional statement, and an efficient approximation to Osher's approximate Riemarm solver. These reconstruction and
upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution
at discontiuities.
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